
Tetrahedron
Tetrahedron Letters 45 (2004) 175–178

Letters
A novel stereoselective carbon-chain extension reaction
at the C-6 position of 1,6-anhydropyranose
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Abstract—6-Bromo-1,6-anhydro-DD-mannose triacetate reacted with a variety of carbon nucleophiles such as allylsilane, silylacet-
ylenes, propargylsilane, and aromatic compounds in the presence of silver triflate to give the corresponding chain extended products
at C-6 in high exo-selectivities. The product obtained from the reaction with propargylsilane was efficiently transformed into a
naturally occurring heptopyranose derivative found in bacterial lipopolysaccharide.
� 2003 Elsevier Ltd. All rights reserved.
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Stereoselective carbon-chain elongation of carbohydrate
is of great importance, because various sugars have been
employed as chiral starting materials, the so-called chi-
ral pool, for the syntheses of many optically active
compounds.1 Carbon-chain extension at the anomeric
position (at C-1) has been extensively studied as �C-
glycosidation� to establish a variety of useful stereo-
selective reactions.2 On the other hand, carbon-chain
extension at the C-6 position of pyranose has been
carried out by alkylation of the aldehyde with carbon
nucleophiles such as Grignard reagents and other
organometallic reagents. However, the stereoselectivities
depend on the kind of carbohydrate, protective group of
the hydroxyl function, nucleophile, etc.3

In this laboratory, C-glycosidation of glycals with
silylacetylenes has been extensively studied to establish a
reliable methodology for highly stereoselective synthesis
of �sugar acetylene� and its wide application.4 On the
other hand, levoglucosenone, a 1,6-anhydropyranose
derivative prepared from pyrolysis of cellulose, has been
employed as a useful chiral starting material.5 Both
methodologies have been applied to the syntheses of
complex natural products such as indole alkaloids,6

tautomycin,7 and tetrodotoxins.8 In the course of these
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studies, we considered that readily prepared 6-bromo-
1,6-anhydropyranose 2 would serve as a substrate for
carbon-chain extension reaction at the C-6 position; the
6-bromide 2 would react with a nucleophile (Nu) in the
presence of an activator to afford adduct 4 (Scheme 1).
This process was anticipated to proceed in a highly
stereoselective manner, because of the steric environ-
ment of the bicyclo[3.2.1] system around the C-6 posi-
tion as well as steric hindrance of the axial alkoxy group
at the C-3 position. Opening the 1,6-anhydro ring of the
product 4 under acidic conditions would regenerate
pyranose 5 bearing a carbon chain at the C-6 position.
O
RO OR RO OROR

1
2

3 4X = H
X = Br Br2, hν

Scheme 1. Stereoselective C–C bond-forming reaction at the C-6

position through 1,6-anhydropyranose intermediate.
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6-Bromo-1,6-anhydropyranose derivatives 2 were pre-
viously studied as the substrate for radical reactions at
the C-6 position by Ohrui, Meguro,9 and Fraser-Reid.10

We disclose herein a highly stereoselective C–C bond
formation at the C-6 position through an oxonium
cation intermediate 3 generated from 6-bromo-1,6-
anhydropyranose 2.11

6-Bromo-1,6-anhydro-DD-mannose triacetate 6 was pre-
pared from photobromination of 1,6-anhydromannose
triacetate12 by the Ferrier procedure,13 and employed as
a substrate for the reaction with allyltrimethylsilane
(Scheme 2 and Table 1). After extensive examination of
the conditions, we found a practical condition whereby
2 equiv of allyltrimethylsilane and 1 equiv of AgOTf in
dichloromethane at 0 �C gave a mixture of 7a14 and
tricyclic product 815 in 63% and 16% yield, respectively
(entry 1).16 The diastereomeric product of 7a at the C-6
position could not be detected. The S-configuration
(exo-stereochemistry) of the C-6 position of the product
7a was confirmed by observing NOESY correlation
between H-4 and H-6.17 The solvent used in this reaction
proved critical to the success of the reaction; when
CH3CN or i-PrCN was employed as a solvent, the
reaction was greatly retarded and gave the product 7a in
very low yields (ca. 30%). The reaction in an aromatic
solvent such as benzene or toluene gave arylated prod-
uct 9 as a major product instead of the desired product
7a.

In order to expand the highly stereoselective reaction,
various nucleophiles listed in Table 1 were examined.
The reaction with silylacetylene such as phenyltrimethyl-
silylacetylene and trimethylsilylheptyne gave the corre-
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Scheme 2.

Table 1. Reaction of 6-bromo-1,6-anhydro-DD-mannose triacetate (6) with va

Entry Nucleophiles

(equiv)

Conditions

AgOTf Solvents Temp

ture

1 CH2@CHCH2A TMS

(2 equiv)

1 equiv CH2Cl2 0 �C

2 PhACBCA TMS

(5 equiv)

1 equiv CH2Cl2 0 �C

3 Me(CH2)4ACBCA TMS

(5 equiv)

1 equiv CH2Cl2 0 �C

4 HACBCACH2A TMS

(5 equiv)

1 equiv CH2Cl2 0 �C

5 p-Methylanisole (5 equiv) 2 equiv i-PrCN rt

6 1,4-Dimethoxybenzene

(5 equiv)

2 equiv i-PrCN rt

7 Furan (5 equiv) 4 equiv i-PrCN 0 �C
sponding adduct 7b and 7c in 59% and 47% yield,
respectively (entries 2 and 3). The reaction with prop-
argyltrimethylsilane also proceeded under the same
conditions to afford allenylated product 7d in 62% yield
(entry 4). In the case of electron-rich aromatics as the
nucleophile, the reaction in CH2Cl2 gave a complex
mixture. In contrast, i-PrCN was an effective solvent to
give the corresponding product 7e and 7f in good yields
(entries 5 and 6). In both cases, 2 equiv of AgOTf was
necessary to consume the bromide 6. Furan, an impor-
tant nucleophile as an equivalent of carboxylic acid,
reacted with 6 in i-PrCN at 0 �C to afford 7g in good
yield (entry 7), while the reaction with TMS–CN, a
conventional alternative to carboxylic acid, gave a
complex mixture under the same conditions.

To demonstrate further usefulness of this reaction, we
carried out a concise synthesis of the peracetate 11 of LL-
glycero-DD-manno-heptopyranose (LL-DD-Hepp), a com-
mon component of bacterial lipopolysaccharide,18 from
the product 7d (Scheme 3). Ozonolysis of 7d was fol-
lowed by reduction with NaBH4 to give alcohol 1019 in
good overall yield. Acetylation of 10 and subsequent
acetolysis afforded LL-DD-Hepp hexaacetate 11 as an
anomeric mixture (a=b ¼ 11:3).20;21

In summary, we have developed a new highly stereo-
selective C–C bond-forming reaction at the C-6 position
of 1,6-anhydro-DD-mannose with various nucleophiles
and demonstrated a facile synthesis of the heptose
derivative. Since a variety of other 1,6-anhydropyranose
and 1,5-anhydrofuranose derivatives22 is available, this
reaction should be useful for the synthesis of carbo-
hydrate-related compounds as well as other complex
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Product (7a–g) 8 yield (%)

era- R@ Yield (%)

7a CH2@CHCH2 63 16

7b PhACBC 59 20

7c Me(CH2)4ACBC 47 15

7d CH2@C@CH 62 7

7e 2-Methoxy-5-methylbenzene 74 Trace

7f 2,5-Dimethoxybenzene 76 Trace

7g 2-Furyl 66 Trace
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Scheme 3. Synthesis of LL-DD-Hepp hexaacetate. Reagents and condi-

tions: (a) O3, CH2Cl2, )78 �C; NaBH4, EtOH, )78 to 0 �C (76%);

(b) Ac2O, py; (c) concd H2SO4, Ac2O (91% in two steps).
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natural products. Further studies along this line are
currently under way in our laboratory.
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